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The effect of coupling between the dipole moment and the orientation is explored based on a relaxation
equation for the second rank alignment tensor characterizing the molecular order in liquid crystals and a
corresponding equation for the electric polarization. The orientational dynamics leads to a time dependence of
the electric polarization. We propose a possibility to measure these effects via the resulting magnetic fields of
the magnitude �B��10−9 T. Furthermore, the presence of the electric polarization modifies the orientational
dynamics as demonstrated in solution phase diagrams.

DOI: 10.1103/PhysRevE.75.040701 PACS number�s�: 61.30.Gd, 47.57.Lj, 61.30.Cz, 95.10.Fh

I. INTRODUCTION

Many liquid crystalline substances are composed of mol-
ecules with a permanent electric dipole moment. Yet due to
directional averaging, there is no electric polarization in a
spatially homogeneous nematic state in equilibrium. In the
presence of a shear flow the alignment tensor characterizing
the orientation of the back bone �figure axis� performs
damped and undamped oscillations, as in tumbling nematics
�1–3�. Even chaotic behavior is possible �4–8�. The dynam-
ics of the alignment leads to a dynamic behavior of the elec-
tric polarization which is proportional to the average electric
dipole moment. In this Rapid Communication, the theory of
the coupled dynamics of the electric polarization vector and
of the second rank alignment tensor of tumbling nematic
liquid crystals �5,6� is treated. To rationalize the underlying
static coupling we use density-functional arguments �9–12�.
The basic equations are formulated and numerical results are
presented for selected values of the relevant model param-
eters where the orientational behavior is distinctively differ-
ent from the previously studied systems without dipole mo-
ment �4–8�. Dielectric polarization has been measured in the
nematic liquid crystal 6CB in �13�. The shear flow-induced
polarization in ferroelectric smetic-C liquid crystals �14� is
associated with physical properties which are absent in
a-chiral nematics. The influence of an external magnetic field
on the orientational dynamics was recently studied in �15�.

II. MODEL EQUATIONS

The macroscopic variables describing the orientation of
the �back bone of the� molecule and of the electric dipole
moment are the second rank alignment tensor a and the
dipole vector d. They are defined by a=�15

2 �uu
�

	 and d
= �e	. Here u is the unit vector parallel to the figure axis of
the molecule. The symbol x

�
indicates the symmetric traceless

part of a tensor x. The molecular dipole moment p is written
as p= pele with the magnitude pel and its direction is deter-
mined by the unit vector e. The averages �¯	 are evaluated
with an orientational distribution function which need not be
specified here. Notice that the molecule is a biaxial object
unless e is parallel to u.

The symmetric traceless part �
�

of the dielectric tensor � is
�
�

=�aa, with the coefficient �a specifying the optical aniso-
tropy of the molecule. The shear flow-induced modifications
of the alignment can be detected optically �16�. The electric
polarization P is related to the dipole vector by P=��p	
=�peld, where � is the number density. The direct measure-
ment of P is, in principle, possible as we later show. In the
original theoretical approach a nonlinear relaxation equation
for the alignment tensor a, coupled to the velocity gradient
field, was derived �17�. In this Rapid Communication we
consider the obvious extension to a coupling with a dipolar
vector for a spatially homogeneous situation. The modeling
is akin to the two-alignment-tensor theory used for poly-
meric side chain liquid crystals �18�.

The equations involve characteristic phenomenological
coefficients; these are the relaxation time coefficients �a�0
and �d�0, as well as �ap which determines the strength of
the coupling between the alignment and the pressure tensor
or the velocity gradient, and the dimensionless coefficients �
and �d. Furthermore, derivatives of a generalized Landau–de
Gennes �LG� potential �=��a ,d� with respect to a and d
occur in these equations. Here we write the �dimensionless�
potential function as �=�a�a�+�d�d�+ 1

2c0d ·a ·d, with the
coefficient c0 characterizing the strength of the simplest type
of coupling between the vector d and the second rank tensor
a. The flexoelectric coupling which is linear in d requires a
spatially inhomogeneous situation which is not considered
here. For the function �a the standard expression �17� �a

= �1/2�A�T�a :a− �1/3��6B�a ·a� :a+ �1/4�C�a :a�2 is used
with A�T�=A0�1−T* /T�. The pseudocritical temperature T*,
the nematic-isotropic transition temperature TK with
TK�T*, and the positive coefficients A0, B, C �with
C�2B2 / �9A0�� are model parameters. The value of A0 de-
pends, in principle, on the proportionality coefficient chosen

between a and �uu
�

	. The choice made above implies A0=1,
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cf. �17�. We note that all these coefficients are linked to
measurable quantities and can also be related to molecular
quantities within the framework of a mesoscopic theory
�19–21�. An amended expression for the LG potential has
been introduced and analyzed in �22�. For the plane Couette
flow to be studied here the observable differences are not
crucial, thus we use the simpler expression here. The poten-
tial function associated with the dipolar vector, however, is
chosen such that the magnitude of d is bounded, specifically:
�d= 1

2Add ·d− 1
4E ln�1− �d ·d�2�, with positive and

temperature-independent coefficients Ad and E. The condi-
tion Ad�0 implies that there is no spontaneous polarization.
Computation of the dipolar vector in the presence of an ori-
enting electric field with the potential used here and compari-
son with the corresponding expression given by the Lange-
vin function yields Ad=3 and, to a good approximation,
E�3, for uncorrelated particles.

The equation resulting for the change of the alignment
tensor a in the presence of a flow field v reads �17,23�

�a

�t
− 2� � a
�

− 2�� · a
�

+ �a
−1�a�a,d� = − �2

�ap

�a
� . �1�

The analogous equation for the vector d is given as

�d

�t
− � � d − �d� · d + �d

−1�d�a,d� = 0. �2�

Here, the derivatives of the LG potential are given as

�a�a�
�� /�a=Aa−�6Ba ·a
�

+Caa :a+ 1
2c0dd
�

, �d�a ,d�

�� /�d=Add+Ed�d ·d� / �1− �d ·d�2�+c0a ·d. The symbols
� and � denote the symmetric traceless part of the velocity

gradient tensor �strain rate tensor� �
�v
�

, and the vorticity
�
���v� /2, respectively. In the following analysis we
specialize on a simple shear flow. In the case of a plane
Couette flow, nonzero values of the parameter � induce
quantitative but practically no qualitative changes in the dy-
namics of the alignment �as compared to �=0� �5,6�. There-
fore we set �=�d=0 in the following.

The entropic part of the free energy For, involving the
one-particle orientational distribution function, leads to the
value c0=−3�6/5�1/2P2�e ·u� for the coupling coefficient.
The above result, especially the coupling term, follows from
a Taylor expansion of For around the isotropic case �9–12�.
Additional contributions to the coupling coefficient may
arise from molecular correlations which, in principle, could
be handled within a density functional ansatz �9–12�. The
electric polarization is preferentially parallel and perpendicu-
lar to the nematic director for c0�0 and c0�0, respectively.

Equations �1� and �2� can be rewritten in scaled variables
�17,23–25�. The alignment tensor and the dipolar vector are
expressed in units of the value of the order parameter at the
isotropic-nematic transition, aK= �2/3�B /C. This implies d*

=d /aK and a*=a /aK. The scaled temperature is
	= �1−T* /T��1−T* /TK�−1=aKA�ref

−1 , where 
ref is defined
as 
ref = �2/9�aKB2 /C. In analogy to the reduced temperature
	 the parameter 	d is given by aKAd�ref

−1 , furthermore E*

=aK
3 E
ref

−1 . The relaxation time of the alignment in the isotro-
pic phase �ref =�aA0

−1�1−T* /TK�−1 at the coexistence tem-

perature is chosen here as reference time, the shear rate is
given by �̇*= �̇�ref. Furthermore, the coupling coefficient is
related to c0 by aK

2 c0=
refc. Instead of the ratio �ap /�a the
parameter �K=−2/3�3�ap /�aaK

−1 is used, as in �5,6,8�.
The derivatives �a and �d of the potential function in

Eq. �1� can be written as

�a*�a*,d*� = 	a* − 3�6 a* · a*
�

+ 2a*a*:a* + 1
2cd* · d*
�

,

�d*�a*,d*� = 	dd* + E*d*�d* · d*�/�1 − �d* · d*�2/�dmax
* �4�

+ ca* · d*.

The maximum magnitude of the scaled dipole vector is dmax
* .

Now quantities in reduced units are denoted by the same
symbols as the original ones. The symmetric traceless align-
ment tensor has five independent components a0¯a4
�5,6,8�. The components of the dipolar vector are denoted by
d1, d2, d3.

The relaxation time �a as well as �d can be related to the
rotational diffusion coefficient by a generalized Fokker-
Planck equation �in the spirit of �19��. In that approach the
ratio of �a /�d is fixed by the value 3. Depending on the
relevant model parameters �̇, �K, 	, 	d, as well as on the
coupling coefficient c the solutions either approach a steady
state or are time dependent. Furthermore, solutions which,
for long times, maintain the symmetry of the plane Couette
type velocity gradient and where the tensor components a3
and a4 vanish �in plane� have to be distinguished from sym-
metry breaking solutions where these components are non-
zero �out of plane�. In the following we use E*=0.04; the
results are not very sensitive to the value of E*.

Within the alignment-tensor theory for pure liquid crystals
without dipole vectors �c=0�, various types of orbits have
been found �5�. These are, on one hand, symmetry-adapted
states referred to as aligning �A�, tumbling �T�, wagging �W�,
and log rolling �LR�. On the other hand, there are symmetry
breaking states classified as kayaking-tumbling �KT�,
kayaking-wagging �KW�, and complex �C�. The C type in-
cludes periodic orbits composed of sequences of KT and KW
motion with multiple periodicity as well as aperiodic, erratic
orbits. The largest Lyapunov exponent for the latter orbits is
positive, i.e., these orbits are chaotic.

III. REPRESENTATIVE RESULTS FOR THE DYNAMICS
IN THE TUMBLING REGIME

The model equations are solved numerically by a Runge-
Kutta-Fehlberg algorithm, with small random initial values
of magnitude about 0.1 for the components of a and d. For
c=0 the algorithm was tested in a comparison of the solution
phase diagram given in �5�. In the following we focus on
dynamics of dipole moments perpendicular �c�0� and par-
allel �c�0� to the figure axis.

First we consider a KT solution without dipole moment.
In this case the eigenvector associated to the main eigenvalue
rotates out of the shear plane such that the projection on the
shear plane is drawing an ellipse. For liquid crystals with a
dipole moment perpendicular to the nematic director
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�c�0�, however, the solution becomes unstable in some pa-
rameter regions of �k, �0, and a KT to T transition can be
observed. After some time the values of a3, a4 leave the
ellipse and go to zero which is characteristic for in-plane
solutions �here the T solution�. A similar behavior is ob-
served for the components of the dipolar vector. In Fig. 1 the
dynamics of the dipole vector is illustrated. Whereas the
third component reached a stationary value after some time,
the components d1, d2 go to zero, i.e., the polarization is in
the z direction.

In the case where the dipole moment is perpendicular to
the figure axis �c�0� the T solution is preferred over the KT
solution. For different initial conditions, especially for very
small values for d, we obtained the KT instead of the T
solution. On the other hand for dipole moments parallel to
the figure axis �c�0� the KT state is favored. As shown in
Fig. 2 the tensor components a3, a4 grow up to a limit cycle
which is characteristic for out-of-plane solutions �in this case
KT�. Here we have a symmetry-breaking effect caused by the
dipole moment. This behavior can also be seen from the
dynamics of the dipole vector d, cf. Fig. 3. At short times the
dynamics follows the solution of the uncoupled system �c
=0�, but after about 1000 time units the component d3 of the
dipole vector approaches a saddle point. Simultaneously, the
components d2 and d1 leave their limit cycle to reach a
smaller stable limit cycle: we observe a transition from T to
KT motion. The remarkable finding is the time dependence
of the electric polarization.

For stronger shear rates, a transition from A to W solu-
tions are seen. For dipole moments parallel to the figure axis
and parameters which are characteristic for flow alignment
�A� in the case of the uncoupled system the molecules start a
W motion.

The solution phase diagrams displayed in Fig. 4 show the
dependence on the model parameters �k and �̇ for 	=0 and
for the dipole coupling coefficients c=0.5 �upper diagram�
and c=−0.5 �lower diagram�. Compared with the corre-
sponding diagram without a dipolar coupling �5�, for c�0
the KT solution has shrunken in favor of the T solution. On
the other hand the change of the W, A, and C regions are
very small. Even chaotic solutions could be observed. In the
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FIG. 1. Phase plots of the dipole vector components d1 vs d2 and
the time evolution of d3. The temperature is 	=0; the other model
parameter are �k=1.0, �̇=1.9, �d=�=0, 	d=0.1, E*=0.04, and
c=0.5.
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FIG. 2. Phase plots of a3 vs a4 at 	=0, �k=1.0, �̇=3.3, �d=�
=0, 	d=0.1, E*=0.04, and c=−1.0.
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FIG. 3. Phase plots of the dipole vector components d2 vs d1 and
the time evolution of d3, parameters as in Fig. 2.

1

1.5

2

2.5

3

3.5

4

4.5

5

0.9 1 1.1 1.2 1.3 1.4 1.5

γ.

λk

KT

KT

KT/LR

T W

W

KW C

1

1.5

2

2.5

3

3.5

4

4.5

5

0.9 1 1.1 1.2 1.3 1.4 1.5

γ.

λk

KT

KT

T

T

W
KW

A

C

FIG. 4. The solution phase diagram at temperature 	=0 for the
model parameters �d=�=0, 	d=0.1, and c=0.5 for the upper plot
and c=−0.5 for the lower. The letters are abbreviations for tumbling
�T�, wagging �W�, kayaking-tumbling �KT�, kayaking-wagging
�KW�, aligning �A�, complex �C�, and log rolling �LR�.
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other case �c�0�, the KT and the W is in favor of the T and
A motion, respectively. The transition line from KT to T so-
lutions is slightly shifted. This shift becomes stronger with
increasing coupling strength c.

IV. CONCLUSION

Tumbling nematics with dipole moment show time-
dependent electric polarization. On the other hand, the dipole
moments in nematic liquid crystal particles affect the dynam-
ics of the orientational order under shear flow as indicated in
solution phase diagrams.

Small magnetic fields generated by the time dependent
polarization should be measurable. The magnetic field can be
inferred from the solution of the wave equation for the vector

potential with the inhomogeneity given by 
0Ṗ. For small
frequencies and in the near-field regime, where retardation
effects are negligible, the magnetic field can also be calcu-
lated from the relevant Maxwell equation in the absence of

an electric current, ��H= Ḋ= Ṗ. As before, a plane Couette
flow is considered between flat plates �parallel to the
xz-plane� separated by the distance h, which is assumed to be

very small compared to the length and breadth of the plates.
Integration of the Maxwell equation over appropriately cho-
sen areas and use of the Stokes theorem leads to Bx=

−
0Ṗzh /2 and Bz=
0Ṗxh /2 for the tangential components of
the B field, immediately above the upper plate. An estimate

of the field strength is inferred from �Ṗ�=��pel�d�, where � is
a frequency characteristic for the dynamics of the electric
polarization. For h=10−2 m, �=103 s−1, �=1027 m−3, and
pel�d�=1.610−29 cm �corresponding to an elementary charge
times 10−10 m�, the field magnitude �B��10−7 T is found.
For h=10−3 m, �=102 s−1 one has �B��10−9 T. The detec-
tion limit of a super conducting quantum interference device
magnetometer is about 10−14 T. So the measurement of the
magnetic field generated by the dynamics of the electric po-
larization in a flowing tumbling nematic liquid crystal is fea-
sible, and it is desirable.
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